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“A	basic	presupposition	of	this	book	is	that	choice	behavior	is	best	described	as	
a	probabilistic,	not	an	algebraic,	phenomenon….

The	presently	unanswerable	question	is	which	approach	will,	in	the	long	run,	
give	a	more	parsimonious	and	complete	explanation	of	the	total	range	of	
phenomena.”

-- R.	Duncan	Luce (1959)

Luce,	R.D.,	Individual	Choice	Behavior:	A	Theoretical	Analysis,	Wiley,	1959;
http://img2.yardbarker.com/media/8/8/884c6ca6f1b4a25bc0597be7da8ea8d7c4c41d66/xl/Random-
Numbers.jpg?stamp=1491141319
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A	Decision	Model	Based	on	Neural	Normalization	Findings
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Levy,	D.,	and	P.	Glimcher (2012),	“The	Root	of	All	Value:	A	Neural	Common	Currency	for	Choice,”	Current	Opinion	in	
Neurobiology,	22	2012,	1027-1038;	Heeger,	D.,	“Normalization	of	Cell	Responses	in	Cat	Striate	Cortex,”	Visual	
Neuroscience,	9,	1992,	181-197;	Louie,	K.,	L.	Grattan,	and	P.	Glimcher,	“Reward	Value-Based	Gain	Control:	Divisive	
Normalization	in	Parietal	Cortex,”	Journal	of	Neuroscience,	31,	2011,	10627-10639



7/13/17	8:19	PM 4

What	Kind	of	Optimization	Process	Is	This?

Can	we	understand	the	normalization	model	in	(some	kind	of)	a	cost-benefit
framework?

Can	we	identify	the	specific	role	played	by	the	normalization	factor in	such	a	
framework?

We	start	with	the	(grounded)	axiom	that	behavior	is	stochastic

Stochasticity	can	be	reduced	but	we	assume	that	reduction	involves	a	cost	
(this	can	be	justified	on	basic	thermodynamic	grounds)

Our	decision	maker	therefore	faces	a	trade-off between	the	(opportunity)	
cost	of	stochasticity	and	the	(energetic)	cost	of	determinism

We	specify	the	cost	of	decreasing	stochasticity	to	be	proportional	to	the	
associated	decrease	in	Shannon	entropy (Shannon,	1948)

Shannon,	C.,	“A	Mathematical	Theory	of	Communication,”	Bell	System	Technical	Journal,	27,	1948,	379-423
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From	Bounded	Rationality	to	Grounded	Rationality

Simon,	H.,	“A	Behavioral	Model	of	Rational	Choice,”	Quarterly	Journal	of	Economics,	69,	1955,	99-118;
http://www.biografiasyvidas.com/biografia/s/fotos/simon_herbert_a.jpg

A	theory	of	decision	making	should	be	
consistent	with

“the	access	to	information	and	the	
computational	capacities	that	are	
actually	possessed	by	the	organism”
-- Herbert	Simon	(1955)
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Decision-Making	Framework

Let							be	a	finite	set	of	alternatives

Let							be	the	collection	of	all	nonempty	subsets	(“choice	sets”)	from	

A	random	choice	rule is	a	function																																											such	that

X

ℑ X

ρ : X ×ℑ→ [0,1]
ρ(x,A)> 0 if	and	only	if																	and

The	interpretation	is	that																			is	the	probability	that	the	DM	
chooses	alternative						when	faced	with	choice	set

Let							denote	the	set	of	all	random	choice	rules	(for	given					)				

x ∈ A

ρ(x,A) =1
x∈Α
∑ for	all A ∈ℑ

ρ(x,A)
x A

℘ X

Steverson,	K.,	A.	Brandenburger,	and	P.	Glimcher,	“Rational	Imprecision:	Information-Processing,	Neural,	and	
Choice-Rule	Perspectives,”	working	paper,	February	2017
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Information-Processing	Model

Let													be	the	value	of	alternative	

The	expected	utility	of	choice	rule						on	choice	set							is

The	associated	Shannon	entropy	is

Let																							denote	the	maximum	possible	entropy	(achieved	when
is	uniform)

We	employ	a	proportionality	factor															in	our	specification	of	the	
cost	of	choice	rule						on	choice	set					,	which	is

v(x)

ρ

F(A)

ρ(x,A)v(x)
x∈Α
∑

ρ

x

A

H (ρ,A) = − ρ(x,A)lnρ(x,A)
x∈Α
∑

Hmax (A)

ρ A
F(A)(Hmax (A)−H (ρ,A))
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Information-Processing	Model	contd.

A	random	choice	rule						has	an	information-processing	formulation if	
there	exist	functions																																			and																																			such	that	
for	all

Note:	If	we	relax	our	definition	of	a	random	choice	rule	to	allow	for	the	
possibility	of	assigning	probability	zero	to	an	available	alternative,	this	
turns	out	never	to	be	optimal.		This	is	because	the	derivative	of	entropy	
become	infinite	as	a	probability	approaches	zero.

v : X→ (0,∞)

ρ ∈ argmax
ρ̂∈℘

ρ̂(x,A)v(x)−F(A)(Hmax (A)−H (ρ̂
x∈Α
∑ ,A))

⎧
⎨
⎩

⎫
⎬
⎭

A ∈ℑ

ρ
F :ℑ→ (0,∞)
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Information-Processing	Foundation

We	can	prove	that	a	random	choice	rule						has	a	neural-normalization	form	
(when	the	noise	is	Gumbel-distributed)	if	and	only	if	it	has	an	information-
processing	formulation

The	normalization	factor in	the	first	formulation	becomes	a	part	of	the	cost	
function in	the	second	formulation,	which	gives	a	(partial?)	normative	
foundation	for	this	factor

At	the	technical	level,	the	equivalence	relies	on:

1.	a	reinterpretation	of	standard	math	from	thermodynamics	(derivation	of	the	
Boltzmann	distribution	via	free	energy	minimization)

2.	an	easy	extension	of	standard	math	from	estimation	of	choice	models	
(McFadden,	1978)

ρ

Steverson,	K.,	A.	Brandenburger,	and	P.	Glimcher,	op.cit.;	McFadden,	D.,	“Modelling	the	Choice	of	Residential	
Location,”	in	Karlqvist,	S.,	L.	Lundqvist,	F.	Snickars,	and	J.	Weibull (eds.),	Spatial	Interaction	Theory	and	Planning	
Models,	Volume	673,	North-Holland,	1978,	75-96



Comparison	with	Other	Models	

1.	The	factor															distinguishes	this	model	from	random	utility

2.	The	Gumbel	distribution	arises	as	the	asymptotic	distribution	of	the	maximum	
of	a	sequence	of	i.i.d.	normal	r.v.’s (can	this	fact	be	used	to	ground	the	model	
further?)

3.	Neural	studies	have	often	taken															to	be	a	sum	(where						is	a	constant):
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ρ(x,A) = Pr (x = argmax
y∈A

v(y)
F(A)

+εy )

F(A)

𝐹 𝐴 = 𝜎 +&𝑣(𝑧)
�

,∈.

F(A) 𝜎
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What	Kind	of	Behavior	Does	Normalization	Permit?

A	random	choice	rule						obeys	regularity if																																										when
,	i.e.,	adding	alternatives	reduces	existing	probabilities

The	classic	Luce rule (axiomatized by	independence	from	irrelevant	
alternatives)	obeys	regularity	

Departures	from	regularity	are	routinely	observed	in	experiments	(as	in	
the	“attraction	effect”)

≈10% ≈90% ≈30%≈30% ≈40%

ρ ρ(x,B) ≤ ρ(x,A)
x ∈ A ⊆ B

Huber,	J.,	J.	Payne,	and	C.	Puto,	“Adding	Asymmetrically	Dominated	Alternatives:	Violations	of	Regularity	and	the	
Similarity	Hypothesis,”	Journal	of	Consumer	Research,	9,	1982,	90-98;	Simonson,	I.,	“Choice	Based	on	Reasons:	The	Case	
of	Attraction	and	Compromise	Effects,”	Journal	of	Consumer	Research,	16,	1989,	158-174;	images	from	The	Attraction	
Effect	Explained,	MarketingExplained channel,	https://www.youtube.com/watch?v=pybVPm5VU5A

?
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Independence	from	Irrelevant	Alternatives

The	IIA	rule	characterizes	the	Luce	model	of	stochastic	choice	(Luce,	1959)

Luce,	R.	D.,	Individual	Choice	Behavior:	A	Theoretical	Analysis,	Wiley,	1959	

A B
x�
y�

ρ(x,A)
ρ(y,A)

=
ρ(x,B)
ρ(y,B)



Relaxed	IIA

Let’s	consider	a	relaxation	of	IIA	that	requires	only

where																																																is	strictly	increasing	(and	likewise	for								)

Note:	The	“strictly	increasing”	condition	implies	that					is	more	likely	to	be	
chosen	than					in						if	and	only	if	this	is	true	in

Say	a	collection	of	random	choice	rules																		is	free if	for	every
and	full-support	probability	measure						on						there	is	a																	with

Note:	The	family	of	Luce	rules	is	free

A	family	of	functions																						is	admissible if	the									are	strictly	increasing	
and	the	collection	of	random	choice	rules	satisfying	(		)	for																						is	free

GA
ρ(x,A)
ρ(y,A)
⎛

⎝
⎜

⎞

⎠
⎟=GB

ρ(x,B)
ρ(y,B)
⎛

⎝
⎜

⎞

⎠
⎟ (∗)

GA : (0,∞)→ (0,∞) GB

x
y A B

P ∈℘ A ∈ℑ
λ A ρ ∈ P

ρ(⋅,A) = λ

{GA}A∈ℑ
GA{GA}A∈ℑ
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∗
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Behavioral	Characterization

A	random	choice	rule						is	a	relaxed	IIA	rule if	there	exists	an	admissible	
family	of	functions																						with	respect	to	which						obeys

We	can	prove	that	a	random	choice	rule						has	a	neural-normalization	
form	(when	the	noise	is	Gumbel-distributed)	if	and	only	if	it	is	a	relaxed	IIA	
rule

The	equivalence	is	a	new	argument	(using	the	Cauchy	functional	equation)

Relaxed	IIA	allows	departures	from	regularity (via	suitable	choice	of											)

There	are	closed-form	axioms	that	characterize	relaxed	IIA,	so	that	
behavioral	testing of	the	rule	is	possible

{GA}A∈ℑ
ρ

ρ

GA
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ρ(y,A)
⎛

⎝
⎜

⎞
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⎛

⎝
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⎞

⎠
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ρ

Steverson,	K.,	A.	Brandenburger,	and	P.	Glimcher,	op.cit.

F(⋅)
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http://www.istockphoto.com/photo/crowd-of-people-above-gm171159648-19164839

From	Green	Cheese	to	…

In	computer	science,	it	used	to	be	said	that	the	theory	was	independent	of	
the	physical	substrate	(“computers	might	as	well	be	made	of	green	
cheese”*)

This	view	turned	out	to	be	wrong	(thanks	to	the	discovery	of	quantum	
speedup)

In	decision	theory,	the	traditional	position	appears	to	have	been	similar	---
that	the	physical	substrate	does	not	matter

This	view	never	made	good	sense,	and	now	we	can	use	inputs	from	the	
cognitive	sciences	to	re-build	decision	theory	… and	game	theory	… and	…


